A Three-Axial Frequency-Tunable Piezoelectric Energy Harvester Using a Magnetic-Force Configuration

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Novel Tunable Multi-Frequency Hybrid Vibration Energy Harvester Using Piezoelectric and Electromagnetic Conversion Mechanisms

This paper presents a novel tunable multi-frequency hybrid energy harvester (HEH). It consists of a piezoelectric energy harvester (PEH) and an electromagnetic energy harvester (EMEH), which are coupled with magnetic interaction. An electromechanical coupling model was developed and numerically simulated. The effects of magnetic force, mass ratio, stiffness ratio, and mechanical damping ratios ...

متن کامل

Modeling and analysis of a three-component piezoelectric force sensor

This paper presents a mathematical model for the vibration analysis of a three-component piezoelectric force sensor. The cubic theory of weakly nonlinear electroelasticity is applied to the model for describing the electromechanical coupling effect in the piezoelectric sensing elements which operate in thickness-shear and thickness-stretch vibration modes. Hamilton's principle is used to derive...

متن کامل

A Miniature Magnetic-Force-Based Three-Axis AC Magnetic Sensor with Piezoelectric/Vibrational Energy-Harvesting Functions

In this paper, we demonstrate a miniature magnetic-force-based, three-axis, AC magnetic sensor with piezoelectric/vibrational energy-harvesting functions. For magnetic sensing, the sensor employs a magnetic-mechanical-piezoelectric configuration (which uses magnetic force and torque, a compact, single, mechanical mechanism, and the piezoelectric effect) to convert x-axis and y-axis in-plane and...

متن کامل

Piezoelectric based vibration energy harvester with tip attraction magnetic force: modeling and simulation

In recent times, vibration based energy harvesting has drawn attention of many researchers worldwide. This is due to advancement in Microelectromechanical (MEM) devices and wireless sensors with power requirements in range of microwatts-milliWatts; hence vibration energy sources have promising potentials for such demands. Thus, many attempts were made by researchers to develop different system ...

متن کامل

Low-Frequency, Low-G MEMS Piezoelectric Energy Harvester

This paper reports the design, modeling and fabrication of a novel MEMS device for low-frequency, low-g vibration energy harvesting. The new design is based on bi-stable buckled beam structure. To implement the design at MEMS scale, we further proposed to employ residual stress in micro-fabricated thin films. With an electromechanical lumped model, the multi-layer beam could be designed to achi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEEE Sensors Journal

سال: 2014

ISSN: 1530-437X,1558-1748,2379-9153

DOI: 10.1109/jsen.2014.2325675